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Abstract — A TLM (Transmission Line Matrix) model
suitable to simulate the propagation of waves in moving
anisotropic continuous media is presented. As it is well
known, an eleciromagnetic wave propagating in a general
medium, moving with respect to its source, experiences a
drag by the own medium, which involves a wave velocity
dependent on the direction of propagation. In this work, we
present a first approach for the case of uniform movement
of an anisotropic dielectric medivm with respect to an
electromagnetic source. Although the technique allows for
quantitative results, a special attention is devoted to the
simulation of wave fronts: distorted elliptical fronts because
a particular kind of “anisotropy” appears, even in an
isotropic medium.

I. INTRODUCTION

The TLM algoerithm [1] is strongly dependent on the
synchronism of pulse propagation and on the network
geometry: in this way, the modelling of complex media is
often a very uneasy task. In order to simulate the
proposed electromagnetic problem, we start from a
previous modelling technique suitable for motionless
anisotropic dielectric media: the permittivity tensor of such
media means the coupling of electric field vectors
components. TLM allows modelling such a coupling by
adding new components to the circuit representation of
the transmission lines network. This is achieved by adding
a voltage source to each node on the mesh [2], accounting
for the coupling of electric fields.

The simplest particular cases are the isotropic moving
media. The propagation speed in an anisotropic medium at
rest depends on the direction, the phenomenon being then
different to the one happening in an isotropic moving
media. Let’s consider a plane wave linearly polarised in an
anisotropic medium. Its speed depends on the polarization
of its fields. On the contrary, in an isotropic medium
moving with respect to the source, [3]-[4], the propagation
speed varies in both directions (forward and backward).

As we write below, when the electromagnetic source
moves in an anisotropic medium, the two effects of fields
coupling are superposed.

1. PLANE W AVES IN MOVING MEDIA

A. The Lorentz Transformation (LT}

As it is well known from the special relativity, the space
and time coordinates for different observers attached to
inertial frames, are transformed through the Lorentz
transformation (LT), giving rise to the invariance of
physical laws, Suppose that for an observer S°, the
electrodynamics laws are described by the usual Maxwell
equations:

VD' =p',VB'=0,VxE = —%,Vxﬁ':%+?(l)

For any other observer in an inertial frame S moving with
respect to S°, the electrodynamic equations are still the
same:

— — — B — 9D =
VD=p, VB =0, VxE=—aa—f, VxH=aa—t+J (2)

and the effect of the movement is included in the field
transformation and the constitutive relations. As a direct
consequence of this invariance, the speed of light ¢ is a
constant in both 8 and §°.

Let’s consider the simplest case where both coordinate
systems S and §” lies parallels to each other and 8’ moves
uniformly with respect to S with a speed less than c,
expressed through B:

v=Bc=B/fe,u, ©)

If Maxwell equations are to be invariant under LT, the field
vectors must be transformed following, [3]:

E=(F-Fxm)i-p?

eD = (cﬁ’—ﬁxﬁ’)/ﬁ
B =(cB +BxEYJi-p2
H= (I?'+Exc5’)/,/l—?

Q)
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It must be noted that the field components parallel to the
direction of relative motion are not transformed at all.

B. The 2D Wave Equation

Let’s (g and (uy denote the permittivity and
permeability tensor respectively of an anisotropic medium,
as measured in the rest frame 5

5/ — (E)f. EI s E: — (u)r 5 E’ (5)

The observer S establishes then the following equations
as constitutive relations :

Dtep, vxH=@EYE +(E€)7xB
B-g,pu, vxE=(y H-(WvxD (6)

The resulting equations (4) and (6), allows obtaining the
wave equation describing the propagation in the frame
where the source fields are in rest.

Let’s consider the propagation in a non—dispersive
anisotropic dielectric medium with its optical axis along the
Z-axis. Then, we can write the permittivity and
permeability tensor in the XY plane as follows:

, [Ex Ey , [, 4]
(e —{E‘y e, ]Eoy(u)—{o Mr}"’ Q)]

Now, when the source is moving uniformly along the X-
axis, as:

B=pa, ®)
the wave equation for each field component normal to X
(lying in the YZ plane) is written in the same way for the

observer S’, i.e., the field equation for the Z component of
the magnetic field strength is:

o H

oH (1 )
Z+1-B )mey——zz
oy
2H,_

axZ

(msx _'p'rBZ)

]

+2E(msx—u,)
c

a;a:
H
~b-p )"’E*?%aayazz
2
- (2 - p’ )maxy aax_gl;
_ ME,B:Z—M, Q;% ©

The coefficient m is defined as the inverse of the
determinant of relative permittivity tensor in (7).

At this time, we are going to look for the consequences
we can get from such equation (9) related to the wave

propagation. To do so, we start with the explicit equation
for a stationary medium, B = 0,:

O'H, , ¥H, , ¥H,_u 3°H
x axz ¥ ayZ xy axay mCZ atz

In comparing the equations (9) and (10), we find two
remarkable points in (9).

Firstly, the second space order space-time derivatives
(cross-derivative) accounts for the inertia of the medium.
The origin of the wave fronts is dragged in time.

Secondly, the coefficients of the second order time
derivative are differently « weighted » in (9) and (10} as the
coefficients of the second order space derivative, normal
to X, are too. This is equivalent to an « effective
elasticity » giving rise to distorted elliptical wave fronts.

= (10)

I, TLM MODELLING

We will extend the TLM method to simulate the wave
propagation when its source moves uniformly with respect
to an anisotropic medium. The starting point is to
discretize the field equations (either Maxwell’s or wave
equatjons) for the field component normal to X, (9), then to
compare it with the equations modelled by the TLM
algorithm, [2]. The terms in the discretized wave equation
having no representation in the mesh equations, will then
be accounted with new elements added to the network
nodes as voltage sources, its value being updated every
time iteration,

A. Wave propagation ir anisotropic moving media.

Let’s go back to the propagation of a wave in an
anisotropic uniformly moving medium parallel to X-axis,
this is the already presented problem. The X field
components are not transformed at all, as shown, then we
deal with the other components normal to X, We point, for
instance to H,, (9), normal to XY plane.

The starting 2D TLM node is a parallel connection of
transmission lines with different characteristic admittances
Y, and ¥, with a permittivity stub with admittance ¥,, and a
series connected voltage source F,, [2]. Then, the field
component H, is represented in the TLM mesh by the total
voltage ¥, at the node. From the equations of voltage and
current at the TLM node, we can write an equation for the
total voltage V¥, depending on the voltages at neighboring
nodes and the time variation of the source, [5]. In this way
the values of the ¢lements of the equivalent circuit are
related with the electromagnetic problem through a relation
that can be easily found by comparing it with the
discretized form of (9).

The results of this modelling are the different values of
propagation speeds in the transmission lines, which
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depends on the rate of the real constitutive parameters to
the effectives. The arms and permittivity stub normalized
admittances for the new TLM node are:

_me, —u,B2

= ¥ =1 11
T ome,1-pH 7 an

2
[.l.,—meBZ _l méey _MrB +1

Y, =4
me,(1-B%) 2| me,(1~p?)

(12)

The voltage source F(t), which includes the cross—
derivatives of the total voltage at the node, and is denoted
by the symbol A’, is updated each time iteration following
the rule, at time step & + I:

me B -y, '

_p2
+ B Z—ZB—-Ail(sz)
2mey, me p° —p,

! ——ZiAZ(VH V,= 0V, (13)
zmsxy maxBZ—ll,. xy\k'z k-1 .r‘ k17 s

B. Absorbing boundary conditions.

When modelling the propagation in an unbounded
medium we need to add an artificial absorbing boundary
condition in the numerical limits of the simulation domain.
This is achieved by introducing, in the limiting nodes, a
reflection coefficient, which matches the admittances. So,
different values are needed for the YZ and YX planes. The
effectives relatives permittivities are:

p, —me,p’
=22 g
¥ mEy(l_Bz) ( )

_B, __mngZ

o =2~ €
me, ~ U [

xef

The calculation of the reflection coefficients in those
nodes follows the same general sketch than in the TLM
modelling of anisotropic media, [2].

III. RESULTS

We have simulated the wave propagation in uniformly
moving media, with respect to the electromagnetic source,
using a 2D TLM model.

A. Doppler effect

The solution of every wave equation is a combination of
charactenistic waves with different phase velocities,
corresponding to the propagation forward and backward.
Then, the propagation is equivalent to the superpesition
of waves with speeds depending on the propagation

direction, [3]-[4]. A change of the frequency occurs when
a wave source is in motion respect to an observer. The
frequency detected by the observer is higher/lower than
that for a stationary source, when the source moves
towards/away from the observer. This is the Doppler
effect,

In the Fig. 1 we find the situation of the propagation of
H, along the X-axis at a time enough to visualize the
different wavelength dependent on the direction of
propagation (forward and backward). The medium has as a
diagonal permittivity tensor with &, =344 and g, = 1.44, a
relative permeability equal to unity and the relative
velocity of the source isp =05,

B. Wave fronts in moving isotropic media

In an isotropic medium in rest, with respect to the
source, the wave fronts are concentric circles around the
point source, expanding outward. When there is relative
movement, the wave fronts are no longer circles and
moreover, the origin of each wave front is dragged. The
fronts form now a set of ellipses with the source at one of
the focus.

A time domain analysis has been performed, in order to
verify the TLM results. They are shown in the Fig. 2, with
&4, = 1.44 and P values as indicated. The source is located
at the cross point of the lines, and the excitation is a
harmonic signal.

C. Wave fronts in moving anisotropic dielectric media

In an anisotropic medium at rest, with respect to the
source, the wave fronts are elliptical centered at the peoint
source. If the electromagnetic source moves, these wave
fronts are no longer elliptical, as the Fig. 3 shown for a
non-magnetic medium with the diagonal permittivity
tensor: & =344, =144,

In other cases the permittivity tensor of the crystal is
non—diagonal aleng the X— and Y- axes (g, non-zero) of
the TLM network. Then, for the frame at rest, the wave
fronts are turned elliptical fronts. The effect of the relative
motion is a distortion due the drag of the medium. The Fig.
4 shows the TLM sumulation for a permittivity tensor:
&=13.0,§ =2.0 and g, =0.3.

IV, CONCLUSION

We have simulated the problem of electromagnetic wave
propagation in anisotropic moving media. The simplest
case of uniform movement has been considered. After the
visualization of the distortion of the wave fronts in such
situation and the different values of propagation speed
dependent on the direction, the validity of technique is
verified.
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(1]

Fig. 1. The effective wavelength is greater / less than that (21
in an stationary medium (dashed line) at right / left of the
moving electromagnetic source.

3]
[4]

(5]

B=046
Fig. 2. Wave fronts for an isotropic medium of refraction
index n = 1.2 and relative velocities [ of motion as
indicated, after several iterations of the algorithm.

- = »

Fig. 3. Wave fronts for an anisotropic dielectric medium
with permittivities g = 3.44, g = 1.44 and g, = 0.0 and
relative velocities B as indicated, after several iterations of
the algorithm.

‘l;x p=0 B=026

Fig. 4, Wave fronts for an anisotropic dielectric medium
with permittivities g = 3.0, & = 2.0 and &, = 0.5 and relative
velocities B as indicated, after several iterations of the
algerithm.
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