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At&w-AA(TtmmissionLioe~ti)md 
suitable to simulate tbe pmpagation of wave8 in moving 
aoisotropic continuous media is presented. As it is well 
known, 80 elwtmmagnetic wave pmpagathg in P general 
medium, moving with rqect to its so- experiences P 
dng by the own medium, whkb involves a wave vehity 
dependent on the dimelion of pmpagatioa In this work, we 
p-t a tint appmacb for the case of uniform movement 
of an anisolmpic diekchic medium with respect b3 an 
electmmagnetic source. Although tbe technique allows for 
quantitative results, a special attention is devoted to the 
stmldation of wave fmnts: distortal euiptkal fronts because 
P pticuhr kind of “aniso~opy” appeprs even in 80 
isotropic medium. 

1. INTRODUCTlON 

The TLM algorithm [I] is strongly dependent on the 
synchronism of pulse propagatmn and on the network 
geometry in this way, the modellmg of complex media is 
often a very uneasy task. In order to simulate the 
proposed electromagnetic problem, we start from a 
previous modelling technique suitable for motionless 
anisotropic dielectric media: the permittivity tensor of such 
media means the coupling of electnc field vectws 
components. TLM allows modelling such a coupling by 
adding new components to the circuit representation of 
the transmission lines network. This is achieved by adding 
a voltage swrce to each node on the mesh [2], accountmg 
for the couplmg of electric fields. 

The simplest particular cases are the isotropic moving 
media. The propagation speed in an anisotropic medium at 
rest depends on the direction, the phenomenon being then 
different to the one happening in an Isotropic movmg 
media. Let’s consider a plane wave linearly polarised m an 
anisotropic medium. Its speed depends on the polarization 
of its fields. On the contrary, in an isotropic medium 
moving with respect to the source, [3]-141, the propagation 
speed varies in both directtons (forward and backward). 

As we write below, when the electromagnetic swrce 
mwes in an amsotropic medium, the two effects of fields 
coupling are superposed. 

II. PLANE WAVB N MOVING MEDIA 

A. The Lorentr Transfoimotion (LT) 

As it is well known from the special relativity, the space 
and tnne coordinates for different observers attached to 
inertial frames, are transformed through the Lorentz 
transformation (LT), giving rise to the invariance of 
physical laws. Suppose that for an observer S’, the 
electrodynamics laws are described by the usual Maxwell 
equations: 

For any other observer in an inertial frame S moving with 
respect to S’, the electrodynamic equatmns are stdl the 
salllt?: 

- - 
vo=p, vE=o, VXL$, vxFi=$+T (2) 

and the effect of the mcwement is included in the field 
transformation and the constitutwe relations. As a direct 
consequence of this invariance, the speed of light c is a 
crmstant in both S and S’. 

Let’s consider the simplest case where both coordinate 
systems S and S’ lies parallels to each other and S’ mwes 
uniformly with respect to S wth a speed less than c, 
expressed through p: 

(3) 

If Maxwell equations are to be invariant under LT, the field 
vectors must be transformed followmg, [3]: 
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It must be noted that the field components parallel to the 
direction of relative motion are not transformed at all. 

8. The 20 Wave Equation 

Let’s (E)’ and @)’ denote the permittivity and 
permeability tensor respectively of an anisotropic medium, 
as measured in the rest frame S’: 

E=@)I.p* p=(#)‘.2 (5) 

The observer S establishes then the following equations 
as constititive relations : 

The resulting equations (4) and (6), allows obtaining the 
wave equation describing the propagation in the frame 
where the source fields are in rest. 

Let’s consider the propagation in a non-dispersive 
anisotropic dxlectric medium with its optical axis along the 
Z-axis. Then, we can write the permittwity and 
permeability tensor in the XY plane as follows: 

Now, when the source is moving uniformly along the X- 
axis, as: 

8=Pli, (8) 

the wave equation for each field component normal to X 
(lying in the YZ plane) is wntten in the same way for the 
observer S’, i.e., the field equation for the Z component of 
the magnetic field strength is: 

(9) 

The coefficient m is defined as the inverse of the 
determinant ofrelative permittivity tensor in (7). 

At this tune, we are going to look for the consequences 
we can get from such equation (9) related to the wave 

propagation. To do so, we start with the explicit equation 
for a stationary medium, p = 0; 

aZH J’H 
E 2+e --2c 
z ax2 y a$ 

In comparing the equations (9) and (IO), we find two 
remarkable points in (9). 

Firstly, the second space order space-time derivatives 
(cross-derivative) accounts for the inertia of the medium. 
The origin of the wave fronts is dragged in time. 

Secondly, the coefficients of the second order tnne 
derivative are differently a welghted n in (9) and (IO) as the 
coefficients of the second order space derivative, normal 
to X, are too. This is equivalent to an B effective 
elast~lty >) giving rise to distorted elliptical wave fronts. 

III. TLM MODELLING 

We will extend the TLM method to simulate the wave 
propagation when its source moves uniformly with respect 
to an anisotropic medium. The starting point is to 
discretize the field equations (either Maxwell’s or wave 
equations) for the field component normal to X, (9), then to 
compare it with the equations modelled by the TLM 
algorithm, [2]. The terms in the discretized wave equation 
having no representatmn m the mesh equations, will then 
be accounted with new elements added to the network 
nodes as voltage sources, its value being updated every 
time Iteration. 

A. Wavepropagation in anisotropic moving media. 

Let’s go back to the propagation of a wave in an 
anisotropic uniformly moving medium parallel to X-axis, 
this is the already presented problem. The X field 
components are not transformed at all, as shown, then we 
deal with the other components normal to X. We point, for 
instance to H, (9), normal to XY plane. 

The starting 2D TLM node is a parallel connection of 
transmission lines with different characteristic admittances 
Y. and Y,, with a permittivity stub with admittance Y,, and a 
series connected voltage source V,, [Z]. Then, the field 
component H, is represented in the TLM mesh by the total 
voltage V, at the node. From the equations of voltage and 
current at the TLM node, we can write an equation for the 
total voltage V, depending on the voltages at neighboring 
nodes and the time variation of the source, [5]. In this way 
the values of the elements of the equivalent circuit are 
related with the electromagnetic problem through a relation 
that can be easily found by comparing it with the 
discretized form of (9). 

The results of this modelling arc the different values of 
propagation speeds in the transmission lines, which 
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depends on the rate of the real const~tutive parameters to 
the effectives. The arms and permittivity stub normalized 
admittances for the new TLM node are: 

y =mE, -hP2 
* m&,(1-B’) 

, Yy=l 

The voltage source V,(t), which includes the cmss- 
derivatives of the total voltage at the node, and is denoted 
by the symbol A’, is updated each time iteration following 
the rule, at time step k + I: 

B. Absorbing boundary conditions. 

When modelling the propagation in an unbounded 
medium we need to add an artificial absorbing boundary 
condition in the numerical limits of the simulation domain. 
This is achieved by introducing, in the limiting nodes, a 
reflection coefticrmt, which matches the admittances. So, 
different values are needed for the YZ and YX planes. The 
effectives relatives permlttwdles are: 

The calculation of the reflection coefficients in those 
nodes follows the same general sketch than m the TLM 
modelling ofanisotmpic media, [?.I. 

III. RESULTS 

We have simulated the wave propagation in uniformly 
moving media, with respect to the electromagnetic source, 
using a 2D TLM model. 

The solution of every wave equation is a combination of 
characteristic waves with different phase velocities, 
corresponding to the propagation forward and backward. 
Then, the propagation is equivalent to the superposition 
of waves with speeds depending ?n the propagation 

directmn, 131-141. A change of the frequency occurs when 
a wave s&c; i in m&n respect tb an bbsewer. The 
frequency detected by the observer is higher/lower than 
that for a stationary source, when the swrce moves 
towards/away from the observer. This is the Doppler 
effect. 

In the Fig. I we find the situation of the propagation of 
II, along the X-axis at a time enough to visualize the 
different wavelength dependent on the duection of 
propagation (forward and backward). The medium has as a 
diagonal permittivity tensor with G = 3.44 and E, = 1.44, a 
relative permeability equal to unity and the relative 
velocity of the source is p = 0.5. 

B. Wavefronts in moving isotropic media 

In an isotropic medium in rest, with respect to the 
source, the wave fronts are concentnc cxcles around the 
point source, expanding outward. When there 1s relative 
movement, the wave fronts are no longer circles and 
moreover, the origin of each wave front is dragged. The 
fronts form now a set of ellipses with the source at one of 
the focus. 

A time domain analysis has been performed, in order to 
verify the TLM results. They are shown in the Fig. 2, wth 
&p, = 1.44 and p values as indicated. The source is located 
at the cross pant of the lines, and the excitation is a 
harmonic signal. 

C. Wave fronts in moving anisotropic dielectric media 

In an anisotropic medium at rest, with respect to the 
source, the wave fronts are elbptical centered at the point 
source. If the electromagnetic source moves, these wave 
fronts are no longer elliptical, as the Fig. 3 shown for a 
non-magnetic medium with the diagonal pennittivity 
tensor:E,=3.&l,E, = 1.44. 

In other cases the permittivity tensor of the crystal is 
non-diagonal along the X-and Y- axes (Go non-zero) of 
the TLM network. Then, for the frame at rest, the wave 
fronts are turned elliptical fronts. The effect of the relative 
motmn is a distomon due the drag of the medium. The Fig. 
4 shows the TLM simulation for a permittivity tensor: 
4 = X0,& = 2.0 and&, = 0.5. 

Iv. CONCLUSlON 

We have simulated the problem of electromagnetic wave 
propagation in anisotropic moving media. The simplest 
case of uniform movement has been considered. After the 
visualization of the distortion of the wave fronts in such 
situation and the different values of propagation speed 
dependent on the direction, the validity of technique is 
verified. 

207 I 



Fig. I. The effective wavelength is greater / less than that 
in an stationary medium (dashed line) at right I left of the 
moving electromagnetx source. 

i; j+x P=O p = 0.6 

Fig. 2. Wave fronts for an isotropic medium of refraction 
index n = 1.2 and relative velocities p of motion as 
indicated, after several iterations of the algorithm. 

p = 0.6 

Fig. 3. Wave fronts for an anisotropic dielectric medium 
with permittiwtles & = 3.44, E, = 1.44 and &Y = 0.0 and 
relatwe velocities p as indicated, after several iteratmns of 
the algorithm. 
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j+x !a=0 p = 0.26 

Fig. 4. Wave fronts for an anisotropic dielectric medium 
wth permlttwtles & = 3.0, pi = 2.0 and + = 0.5 and relative 
velocities p as indxated, after several iterations of the 
algorithm. 
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